A compound found in pine needles, called suramin, has been identified as a potential antidote to the current spike protein contagion resulting from the chimeric SARS-CoV-2 coronavirus, and the potential pathogenic transmission of the spike protein from the experimental mRNA vaccines.
Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by Suramin -
"Here we report that suramin, a 100-year-old drug, is a potent inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and acts by blocking the binding of RNA to the enzyme. In biochemical assays, suramin and its derivatives are at least 20-fold more potent than remdesivir, the currently approved nucleotide drug for treatment of COVID-19." ....
Suramin can be naturally obtained as an alcohol extract from Pine tree needles. Among other beneficial constituents of pine tree needles are Alpha-Pinene, Beta-Pinene, Beta-Phellandrene, D-Limonene, Germacrene D, 3-Carene, Caryophyllene, vitamin A, and vitamin C. Pine needles also contain shikimic acid, used historically in Traditional Chinese Medicine to treat plagues and respiratory illness.
Pine needles have been used by indigenous populations around the world as both food and medicine for thousands of years. Fresh pine needles from eastern white pine trees and other appropriate trees have been used for centuries as sources of vitamin C and other phytochemicals that Native Americans used to treat respiratory infections and other ailments. Vitamin C is a known cure for scurvy, as scurvy is a disease of vitamin C deficiency. Pine needles contain many other substances that appear to reduce platelet aggregation in the blood, potentially preventing blood clots that lead to strokes, heart attacks, and pulmonary embolism diagnosis.
Mechanism Identified Whereby Suramin Inhibits SARS-CoV-2 RdRp
Thus, research shows that suramin is a direct and potent viral RdRp inhibitor by direct inhibition, with structural analysis showing the mechanism of binding and inhibition.
Not only has suramin from pine needles been used traditionally for viruses and parasites, but suramin-based drugs have been extensively tested as a treatment for several types of cancers.
The inhibitory effect of suramin sourced from pine needles on the coronavirus spike protein, Zika and Chikungunya viruses, and certain parasites warrant further evaluation of this naturally occurring compound as a potential broad-spectrum therapeutic food.
Get your wildcrafted Pine needle Tea and Pine Needle Tincture now.
References
1. Xu, H. Eric, Wanchao Yin, Xiaodong Luan, Zhihai Li, Leike Zhang, Ziwei Zhou, Minqi Gao et al. "Structural basis for repurposing a 100-years-old drug suramin for treating COVID-19." (2020).
2. Yin, W. et al. (2020). Structural Basis For Repurposing A 100-Years-Old Drug Suramin For Treating COVID-19. bioRxiv preprint. doi: https://doi.org/10.1101/2020.10.06.328336. https://www.biorxiv.org/content/10.1101/2020.10.06.328336v1
3. Salgado-Benvindo, C. et al. Suramin Inhibits SARS-CoV-2 Infection in Cell Culture by Interfering with Early Steps of the Replication Cycle. Antimicrob Agents Chemother 64(2020)
4. Albulescu, I.C., Kovacikova, K., Tas, A., Snijder, E.J., and van Hemert, M.J. (2017). Suramin inhibits Zika virus replication by interfering with virus attachment and release of infectious particles. Antiviral Res 143, 230-236.
5. Henß, L. et al. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry. Virol J 13, 149 (2016).
6. Ren, P., Zou, G., Bailly, B., Xu, S., Zeng, M., Chen, X., Shen, L., Zhang, Y., Guillon, P., Arenzana-Seisdedos, F., et al. (2014). The approved pediatric drug suramin identified as a clinical candidate for the treatment of EV71 infection-suramin inhibits EV71 infection in vitro and in vivo. Emerging microbes & infections 3, e62.
7. Albulescu, I.C., van Hoolwerff, M., Wolters, L.A., Bottaro, E., Nastruzzi, C., Yang, S.C., Tsay, S.-C., Hwu, J.R., Snijder, E.J., and van Hemert, M.J. (2015). Suramin inhibits chikungunya virus replication through multiple mechanisms. Antiviral Research 121, 39-46.
8. Zoltner, Martin, Gustavo D. Campagnaro, Gergana Taleva, Alana Burrell, Michela Cerone, Ka-Fai Leung, Fiona Achcar et al. "Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes." Journal of Biological Chemistry 295, no. 24 (2020): 8331-8347.
9. De Clercq, Erik. "Suramin in the treatment of AIDS: mechanism of action." Antiviral research 7, no. 1 (1987): 1-10.
10. Kartnig, Theodor, Franz Still, and Franz Reinthaler. "Antimicrobial activity of the essential oil of young pine shoots (Picea abies L.)." Journal of ethnopharmacology 35, no. 2 (1991): 155-157.
11. Croci, R., Pezzullo, M., Tarantino, D., Milani, M., Tsay, S.-C., Sureshbabu, R., Tsai, Y.-J., Mastrangelo, E., Rohayem, J., Bolognesi, M., et al. (2014). Structural bases of norovirus RNA dependent RNA polymerase inhibition by novel suramin-related compounds. PloS one 9, e91765-e91765.
12. Cheng, B., Gao, F., Maissy, E., and Xu, P. (2019). Repurposing suramin for the treatment of breast cancer lung metastasis with glycol chitosan-based nanoparticles. Acta Biomater 84, 378-390.
13. Myers, Charles, Michael Cooper, Cy Stein, Renato LaRocca, M. M. Walther, Gary Weiss, Peter Choyke, Nancy Dawson, Seth Steinberg, and Margaret M. Uhrich. "Suramin: a novel growth factor antagonist with activity in hormone-refractory metastatic prostate cancer." Journal of clinical oncology 10, no. 6 (1992): 881-889.
14. Stein, C. A., R. V. LaRocca, R. Thomas, N. McAtee, and Charles E. Myers. "Suramin: an anticancer drug with a unique mechanism of action." Journal of Clinical Oncology 7, no. 4 (1989): 499-508.
15. Mooon, Jeong-jo, Young-bok Han, and Jin-suk Kim. "Studies on antitumor effects of pine needles, Pinus densiflora Sieb. et Zucc." Korean Journal of Veterinary Research 33, no. 4 (1993): 701-710.
16. Spigelman, Zachary, Amy Dowers, Susan Kennedy, Dennis DiSorbo, Michael O'Brien, Ronald Barr, and Ronald McCaffrey. "Antiproliferative effects of suramin on lymphoid cells." Cancer research 47, no. 17 (1987): 4694-4698.
17. Kathir, Karuppanan Muthusamy, Thallapuranam Krishnaswamy S. Kumar, and Chin Yu. "Understanding the mechanism of the antimitogenic activity of suramin." Biochemistry 45, no. 3 (2006): 899-906
18. https://pubchem.ncbi.nlm.nih.gov/compound/Suramin-sodium
19. Hosang, Markus. "Suramin binds to platelet‐derived growth factor and inhibits its biological activity." Journal of cellular biochemistry 29, no. 3 (1985): 265-273.
20. Betsholtz, Christer, Ann Johnsson, Carl-Henrik Heldin, and Bengt Westermark. "Efficient reversion of simian sarcoma virus-transformation and inhibition of growth factor-induced mitogenesis by suramin." Proceedings of the National Academy of Sciences 83, no. 17 (1986): 6440-6444.
21. Coffey Jr, Robert J., Edward B. Leof, Gary D. Shipley, and Harold L. Moses. "Suramin inhibition of growth factor receptor binding and mitogenicity in AKR‐2B cells." Journal of cellular physiology 132, no. 1 (1987): 143-148.
22. Sartor, Oliver, Catherine A. McLellan, Charles E. Myers, and M. M. Borner. "Suramin rapidly alters cellular tyrosine phosphorylation in prostate cancer cell lines." The Journal of clinical investigation 90, no. 6 (1992): 2166-2174.
23. Wiedemar N, Hauser DA, Mäser P. 2020. 100 years of suramin. Antimicrob Agents Chemother 64:e01168-19. https://doi.org/10.1128/AAC.01168-19.
Comments